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A continuum calculation of the current-voltage characteristic of the boundary layer of a 
weakly ionized molecular-gas plasma at a nonemitting cathode, taking into account the depen- 
dence of the transport and kinetic coefficients of the plasma on the electric field inten- 
sity, was performed in [I]. In this paper the impedance of such a boundary layer is calcu- 
lated. 

The problem of calculating the impedance of the collisional cathode region taking into 
account nonstationary effects in the Debye layer was previously studied in [2-5] for a chemi- 
cally frozen Debye layer and in [6] for a Debye layer with ionization by an external source. 
An approximate analytic solution was constructed with the help of a priori separation of the 
perturbation region into a Debye layer and a quasineutral region with some joining conditions 
(also a priori) at the (nonstationary) outer boundary of the Debye layer. In this paper the 
method of joined asymptotic expansions is employed to solve both the nonlinear stationary 
problem and the linear problem for perturbations. 

i. Formulation of the Problem. We shall study a gas-dynamic boundary layer of weakly 
ionized plasma on a flat electrically conducting surface. The plasma contains neutral par- 
ticles and singly charged positive ions and electrons. We shall use the hydrodynamic system 
of equations for the distributions of the molar fractions x i and x e and diffusion flux den- 
sities Ji and J. for ions and electrons and the electric field intensity. By analogy to [7] 
we shall write this system in the form 

{az i ~Eo~ ox~ o o 

Ox i OJ~ . 
n ~t  o + ~ ~ ] i l  - -  k r l n i ne  + ki2ne, 

I OE ~ Oi ~ OE~ ~ 4 h e n  (xi --  xe). jO = e ( J i - -  J ~ ) + ~-f- ~-6- , ~ - - = 0 ,  07 

Here t o is the time; the y axis is oriented along the normal from the wall; n is the particle 
density in the plasma; ni = nxi, ~ = n~ are the ion and electron densities (ni<<n, ne<<n); 
D i and D, are the coefficients of diffusion of ions and electrons; #~ is the mobility of 
electrons; j0 is the total electric current density (including the condution and displacement 
currents); T is the heavy-particle temperature; e is the electron charge; k is Boltzmann's 
constant; the terms on the right side of the third equation take into account, following [I], 
the stepped ionization with the participation of heavy particles, the corresponding inverse 
process (recombination), and direct ionization by electron impact (this process is sig- 
nificant for sufficiently large values of E~ fll is the rate of stepped ionization; krl is 
the coefficient of stepped recombination; and, ki2n , is the rate of direct ionization. It is 
assumed that the mobility and coefficient of diffusion of the ions are related by Einstein's 
relation, and the convective transport of charged particles is assumed to be negligibly small 
compared with the volume ionization. 

For simplicity we shall neglect the dependence of the coefficients of diffusion of ions 
and electrons on E ~ We shall also neglect the dependence of the coefficient of stepped 
recombination on E~ then the representation fi, = krln~r, where net is the chemically equi- 
librium quasineutral charged-particle density in the limit of a weak field, is valid. Thus 
D~, De, kr~, net are assumed to be given functions of the local values of T and n and the par- 
tial composition of the neutral components; #~ and ki2 are given functions of the same argu 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. i, pp. 
41-49, January-February, 1988. Original article submitted October 8, 1986. 

38 0021-8944/88/2901-0038512.50 �9 1988 Plenum Publishing Corporation 



ments and E ~ In the concrete calculations performed below the dependences from [I] are 
employed for these functions. 

We shall assume that the Joule heating in the boundary layer is much weaker than the 
convective heat flux, and we shall neglect the effect of ionization on the flow field of the 
neutral component. Then the functions T and n and the partial composition of the neutral 
components can be found by solving the corresponding gas-dynamic problem neglecting the pre- 
sence of ionization; in this formulation, the functions of the particle density on the sur- 
face of the electrode, which we assume to be ideally absorbing, catalytic, and nonemitting, 
may be assumed to equal zero; at distances much greater than the thickness of the boundary 
layer 6, the concentrations approach the fixed value n~r~ (the subscript ~ is assigned to 
values of the corresponding functions on the outer boundary of the boundary layer): 

x i  = Xe = O, ~,1/6 --* oo: x i --* ner ooln~, xe -->- ne~oolnoo. 

For the missing boundary condition we fix the value of the electric current density j0 
We shall transform the formulated problem to dimensionless variables: 

= - a - = -- az: --  z,E; (I. i) 

- 0  o----f + I i  = 2 b x - ' ( r  2 - -  ziz~ + cze); ( 1 . 2 )  

( , Ze = ~ [i -- -~ + 85 ~-~ (] = ] (t) problem) ; (i. 3) 

eSE' ---- z i -- Ze; (1.4) 

N = O: z i -  Ze = O, r l - -*  o o : z i - +  1, % - +  t5 

Y e6E ~ x~no= ~Ym ( 1 . 5 )  
~ I = - T  , t =  ~ t  ~ E =  k - ~ '  z,~ = I m  = ~  

nero= ' Om=oner ~ 

nD i nDe T kToon~t~ 
( m - = i , e ) ,  a ---- 

b krln2 nern~176 ki2n~176 
2 ' r =  c , c z = 6 ~ / D i ~ ,  

/crloonoo nercvn' krln er~ n 

2Dio ~ Di kT oo %~/o 
z =  I =  . 

krlcon er~ot3 , 4a~n ere~e2t3~ t eDicr ereo 

Here it is assumed for simplicity that the ratio of the coefficients of diffusion of ions and 
electrons is constant in the volume of the boundary layer; the function n/n~ on the left 
sides of (1.2) and (1.4) is written, in accordance with the condition that the pressure is 
constant across the boundary layer, as 0 -I , A is the inverse characteristic time of the 
perturbations of interest; the prime denotes differentiation with respect to y. Based on the 
foregoing, O, a, b, r, c, # are assumed to be given functions: 

O ---- O(rl),. a -= a(TI), b ----- b(q), r ---- r(~l) , c ----- c(q, E), ( 1 . 6 )  

~t = ~(~1, E). 

We s h a l l  a s sume  t h a t  t h e  " g i v e n "  f u n c t i o n  j ( t )  c o n t a i n s  a s t a t i o n a r y  c o m p o n e n t  and  a 
s m a l l  c o m p o n e n t  d e p e n d i n g  e x p o n e n t i a l l y  on  t h e  t i m e  ( p e r t u r b a t i o n )  ] ( t ) =  j~ -?  vp'exp ( . E P ) =  1'~ + 
vpexp  (-- t) ,  w h e r e  j s  j p ,  a nd  v a r e  g i v e n  p a r a m e t e r s ;  p =~ OQO; ~ = o(t).  The i n d e x  i n  t h e  
exponential is in general complex (A is a complex quantity; in addition, together with purely 
imaginary values, in connection with the analysis of stability problems we shall also study 
its values with a nonzero real part). 

We shall seek the solution of the problem in an analogous form. For functions with an 
index s, describing the stationary base state, we have a problem analogous to (i.I)-(1.6) 
(without nonstationary terms; instead of z m, Ira, E, ], it, c we shall have z'm, ISm, E s, ]'~, V s, c~). For 
functions with the index p, describing perturbations caused by th e perturbation of the cur- 
rent density, we obtain the linearized problem. 

2. Asymptotic Formulation. The stationary problem and the problem for perturbations 
contains dimensionless determining parameters e, %, ~, .is, ]P, c~. Under typical conditions [I] 
the first three of them are of the order of i0 "8, 10 -4 , i0 -2, respectively, and are assumed 
to be small in the asymptotic analysis. We note that the smallness of e and X indicates 
quasineutrality and ionization equilibrium in the outer part of the boundary layer, and the 
smallness of ~ takes into account the difference in the drift velocities of the ions and 
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electrons. We shall establish the following order ratios between ~, X, and fl: 8/%-+ 0, ~- 
i . . I i ~  where k I is fixed. We assume that the parameter js is negative and fixed, which 
corresponds to the case of a thick Debye layer at the cathode with intense generation of 
charged particles [7]. The parameter jP, in accordance with the foregoing, is assumed to be 
comparable to j s, and therefore also fixed. The parameter e can vary over a wide range: in 
this work we examine the cases ~ = O[(8%)-I/2], ~ = O(8-I/~%-I), corresponding to perturbations 
with characteristic times of the order of the drift times for ions or electrons drifting 
through the Debye layer. 

According to the results of [I], direct ionization and the dependence of p0 on E ~ become 
significant only in the Debye layer; outside this layer the rate of direct ionization is 
exponentially 10w , ~~ = eDe(kT) -I. For this reason , we assume that the functions c and p have 
the form c -~ e-I/~wi(exE2), ~t -~ aO-1w2(e~E2 ), where wl = w1(x), w~ ~- w~(x)are given functions, the first of 
which decays to zero exponentially and the second approaches unity (they also depend on y). 

3. Asymptotic Solution. We shall study perturbations with a characteristic time of the 
order of the drift time of ions drifting through the Debye layer: a-----(8~),I/~i, ~i--=-O(I). We 
shall write the asymptotic expansions of the solutions of the stationary problem and the 
perturbation problem, valid in the outer (equilibrium) part of the Debye layer, as 

, s -1121q z i = r +  . . . .  z ~ = r +  . . . .  I ~ =  ]s+ . . . .  

I s = __ X - 1 1 2 k l / +  . . . .  E s = X - 1 / 2 k l O / / ( a r  ) + . . ,  

z~ = ( - -  8 a / z X - X 2 b r O / ~ l  + e k l )  k , O p  ( O a - l r - 1 )  ' + . . . ,  

z v = _ 8 Z - 1 1 2 k l O j  v ( @ a - i r - 1 ) '  + . . . .  I v = E - i l 2 k d V  + . . . .  

I v ---- - - X - 1 / Z k l j  v + . . . .  E v %- l lSOk l /V  Jr . . . .  ~ I D < T I <  oo. 
a r  

The thickness of the volume charge layer introduced here ~D is a function of the current 
density, and must be determined in the course of the solution of the stationary problem. 

The expansions valid in the first transitional layer are 

Zi ---= g2 012) "4- . . . ,  Z e = g z ( T h )  -~ . . . .  

I s  = x - l l 2 ( k i ]  s - -  2 a D d g J d ~ h )  + . . . .  I'~ = - -  X - l l ~ k ~ ]  " + . . . ,  

= x-l  e. ( 1 @  - + . . . .  

1~2~t2 ~P 

X ~2 aDg2 ~ dl] 2 

z v = e X - ' I q 0 2 ]  v ( d g 2 / d q ~ ) / ( a D g ~ )  + . . . .  

I v = X-~/2k~]  v + . .  I ~  = - -  % - ~ / 2 k d V  + . . .  E p = "~-*/"kIOD]v + . . . .  
�9 ~ , aDg 2 

0 < ~ = ~-~/~(~ -- ~l . )  < oo ,  

. (v ~ -  t0v + t) (5 + 2 ~ / 6 )  exp [ (2bDrD/a , ) '12~h] .  

H e r e  a n d  b e l o w  t h e  i n d e x  D i s  a s s i g n e d  t o  v a l u e s  o f  t h e  f u n c t i o n s  a t  ~ = ~D. 

The  e x p a n s i o n  o f  t h e  s o l u t i o n  o f  t h e  p r o b l e m  f o r  t h e  p e r t u r b a t i o n s  i n  t h e  a u x i l i a r y  
transitional layer for perturbations has the form 

z v = 8 ~ / a z - z / 4 c  x exp ( - -  Q"Is) 4- . . .  , ze v = E'l/4z-3/4CI exp ( - -  Qqa) -5 . . . .  

1~ = x - x 2 a D Q C 1  exp ( - -  Qqa) + . . . .  1~' = x - m l %  [ 2 a D Q C ,  exp ( - -  Qq3) - 

- -  ]p] q- Ep ODC 1 exp ( - -  QTI3) (4q --}- 1 Q ) 
. . . .  = ~'z~'~v \ n~ + ~  + . . . .  

~] -- ']D < 0 < ~ h =  ~ oo, 

1 

~/~, %, = q = __ ~-f-~-~,, 
Q =  2aDO ~ k 3a~  / ' 
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where C 1 is an unknown constant, whose value is determined below; Re Q > 0. In the deriva- 
tion of this expansion real positive values of a are excluded from the analysis. 

We seek the expansions valid in the second transitional layer in the form 

8 
z~ = (~l~)~/~ g~ (~,) + . . . ,  z, = (~l~)~/~h ( @  + . . . .  

~ , / ~  - +  . . . . .  I ~ =  - ~  + . . . .  = ~ + . . . .  

z~ = d / ' z - ' ~ / ' g ~ ( ~ , )  + . . . ,  z,' - -  # ' z - ~ / ' l ~ ( ~ )  + . . . .  

~ = x - ' 2 ~ o q c ,  + . . . .  z~ = ~ - " k ~  ( 2 = o q c ~  - p )  + . . . .  

E ~ =  ~ ( ~ )  ~ - - ~  

The boundary conditions in the limit ~4-+--oo are that the functions g~ and f4 decay 
and the solution of the problem for perturbations does not grow exponentially. Analysis 
shows that the asymptotic expansions of the solutions of the problems in the limit ~4-+- oo 
are : 

g 4 =  (2q -I- l )vv~O~ (--u4)-v-"  -F . . . .  A = 2qy'/-"OD ( - - ~ D -  :/~ + . . . ,  

E 4 = - 2 ( - Y ~ h ) l l  -"+ . . . ,  g ~ = y - 1 / ~ ( - - ~ 4 ) - a / = O ~ C l ( 2 q + t ) / 2 +  . . . ,  

/ , '  = v -~/~ ( -  ,~ , ) - , /~q%c~ + . . . , ~  E~ = c~ ( -  r ~ ) - ~ / :  + . . .  

The expansions valid in the third transitional layer are 
k:jSOD 

z~ = eJl~"v -~1~ ODa'~ + z~ = e~l~x-:l~ ~ + 
t ,  a j ) E  5 " " " ~ " " " ~ 

I~ = :~-1/2G~ Ok)  + . . . .  I~ = - -  X-:/2kl]" + . . . .  E '  = ~-:/2E~ Oh) + . . . ,  

zp 1/2 --1 p �9 , Ze p El /2~- - l / sP( ,q2)  _]_ = e  ~ g s ( r h ) + . .  = . . . ,  

i p  - ,  "a. . . . ,  E "  = ~ a~ (~.,) + . . . .  z~ = X-'/2F~ (n2) + = (~:~)- ' l 'e~( ,~)  + . . . .  

oo < ~1,,. < O, G~ = 2 b ~ r ~  h + k~] ~ - -  2aDy, 
. 2  2 E~ = - -  ( 2bD1Dll2/aO - -  4y~:) ~/~. 

The a s y m p t o t i c  b e h a v i o r  o f  t h e  s o l u t i o n  f o r  p e r t u r b a t i o n s  i n  t h e  l i m i t  ~ 2 - +  ~ i s  
determined by the sign of the quantity Re cct/p ~ I. Since for purposes of this work we are 
mainly interested in the harmonics (Re a = 0) and the growing (Re ~ < 0) perturbations, we 
shall assume below that this quantity is negative. Then the asymptotic expansions for per- 
turbations in the limit ~z-+--~ will be 

GP~--+-aDC1C2, Y~'-+ k ,  (1 --0~l/p) aDC~C 2 - -  k~] p, 

E~ -+ aop-~C~C~., p = (2aDbD)~/"rn, 

where  C 2 i s  a known q u a n t i t y  ( f o r  b r e v i t y ,  t h e  m e t h o d  b y  w h i c h  i t  i s  d e t e r m i n e d  i s  n o t  
p r e s e n t e d ) .  

We s e e k  t h e  e x p a n s i o n s  v a l i d  i n  t h e  Debye l a y e r  ( 0 < ~  l < ~ )  i n  t h e  f o r m  

z~ = d / ~ Z - ' a g ~  01) -t- . . .  , z~ = ~ ' a  h 0}) + . . . . .  

l~ = ~ - ' a ~  0]) + . . . ,  I~ = X - ' /~F~  0])  + �9 � 9  E ~ = (~ 'z ) - ' /~e~ 0])  + . . . .  

z f  = e'12X-i/~g~ 01) + . . . .  zPe = dl~ fi  01) + . . . .  

1~ = x - ' G ~  O1) + . . . .  I~ = X-~/~F~ OI) + . . . .  EV = (eZ)-'/2E~01) -I- . . .  

The stationary problem in the Debye layer is: 

G~ = ag~E~/O, F~ = - -  ~%/~E~, 
( 3 . 1 )  

C~ = 2b (,.2 + cd~), F ,  = k ,  (a~ - -  i ' ) ,  OE'~ = g~; 

POD, kllSOD 
~1 -"~rlD : g~ "-~ -ED-- D 1~ P ( n - -  riD) + . . . .  ( 3 . 2 )  
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G6= 2bDr~Ol--rlD) q- . . . ,  F6"--~--klj*, Eo-----a-~(~'l--~lD) q- . . .  ; 

= o: /o = o,  ~ = ,,,, (E~) ,  ~ = ( , / 0 ) w ~  ( ~ . ) .  ( 3 . 3 )  

It can be shown that the boundary conditions (3.2), taking into account Eqs. (3.1), are 
equivalent to the following two relations: 

ce(nD ) = Ee(,1D ) = O. ( 3 . 4 )  

Thus the stationary problems for the Debye layer (3.1), (3.3), and (3.4) is closed: we 
have three boundary conditions to determine two constants of integration and the constant ~V" 
This problem in general does not have an analytic solution, and must be solved numerically; 
in this work the iteration algorithm of [i] is employed. 

The problem for perturbations in the Debye layer is: 

~ = (~/o)(g~E. + g,E~),: (3.5) 

F~ = --  ~t 6 ([~E e + ],E~) - -  2aO-aw4E~f,E~, 

F~ = k~ ( ~  - f -  =~F~), O (e~)" = g~; 

'1]"'>" 'lID: g~ = O [ ( ] ] - -  ~D) - - I ] ,  ]6 p = - -  klJSa~ODClC2 "JI- . . . ,  ( 3 . 6 )  
p3 ( n -  n . )  ~" 

G~--+aDC1C ,, F~-->'ka ( i - - - ~ - ) a D C 1 C , - -  kl] ' ,  E]--+aDC1C2/p; 

~=0:]~=0 ( 3 . 7 )  

(w 3 and w 4 are derivatives of the functions w1(x), w2(x)). 

The joining conditions (3.6) are equivalent to the condition 

TI--+ T1D: E]  0(1). ( 3 . 8 )  

The problem (3.5), (3.7), and (3.8) is closed; it can be solved (in the general case 
numerically) and the heretofore unknown constant C I can then be determined. For brevity, we 
do not write out the expansions valid in the diffusion layer (with ~ = O[(eE)I/2]). 

We shall examine some characteristic features of the solutions of the stationary pro- 
blem. Evaluating the voltage drop in each of the asymptotic regions we find that the Debye 
layer makes the determining contribution to the total drop in the boundary layer. For this 
reason, to calculate the current-voltage characteristic of the boundary layer in the first 
approximation it is sufficient to solve the problem (3.1), (3.3), and (3.4). 

It is interesting to compare our results with the results of [i, 7], obtained in the 
limit e-+0, ~-+0, and for fixed ~. It can be shown that the problem (3.1), (3.3), and 
(3.4) can be obtained by passage to the limit fl ~ 0 from the corresponding problem [7] (if 
the latter is supplemented, as done in [I], with terms that take into account the direct 
ionization and the dependence of the electron mobility on the electric field intensity), so 
that the current-voltage characteristics will be identical with accuracy up to 15 ft. On the 
other hand, the asymptotic structure of the transitional zone between the equilibrium region 
and the Debye layer is generally speaking very different. 

If the direct ionization is neglected, then the ion density distribution, the ion dif- 
fusion flux density, and the electric field intensity in the Debye layer can be found neglec- 
ting the presence of electrons, after which the electron density distribution and the elec- 
tron diffusion flux density can be found. This result agrees with the proposition of [8], in 
which the presence of electrons was ignored in the formulation of the system of equations 
describing the Debye layer with ionization by an external source. The problems (3.1), (3.3), 
and (3.4) can then be solved in quadratures. 

The interesting features of the solutions obtained for the perturbations are the non- 
monotonic character of the change in the orders of magnitude of the functions sought as well 
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as the nonquasineutrality of the solutions in all regions, except the auxiliary transitional 
layer (in particular, the perturbations are nonquasineutral even in the equilibrium region). 

The Debye layer makes the determining contribution to the perturbations of the total 
voltage drop. The system (3.5), describing the distribution of perturbations in the Debye 
layer, is analogous to the system of equations for the stationary solution (3.1) (in the 
sense that it can be obtained by introducing nonstationary terms into (3.1) and linearizing). 
The boundary conditions at the walls are also analogous. The difference in the form of the 
boundary conditions in the limit N-+ND is linked with the fact that the thickness of the 
Debye layer is a function of the current density. 

Defining the impedance of the boundary layer R ~ as the ratio of the perturbations of the 
voltage drop to the perturbation of the current density, in the first approximation we find 

B ~ = [SkToo/(e2D~ner~)]R; (3.9) 

~D 

= { ! ) ' / ~ !  ~' Eodn," (3  . lO)  R 
\ ~ l  jv J 

0 

where  E~ i s  t h e  s o l u t i o n  o f  t h e  p r o b l e m  ( 3 . 5 ) ,  ( 3 . 7 ) ,  and  ( 3 . 8 ) ,  wh ich ,  g e n e r a l l y  s p e a k i n g ,  
mus t  be  f o u n d  n u m e r i c a l l y .  

If direct ionization is eliminated from the analysis, then the equations for the pertur- 
bations in the Debye layer, like the stationary equations, separate, and their solution can 
be constructed in quadratures. If further simplifications are made, namely, it is assumed 
that br z - const and a - const for ~ S ND, then these integrals can be calculated analytical- 
ly. As a result R = (Z/e)I/2 ~D/~ -- ~a). 

We shall write this formula in the dimensionless variables in the form 

o o 4~y D 
R o = RdRc R~ dUS =d-~' R~ (3.11) 

(U s ' j~0, and YD are the dimensional values of the stationary voltage drops in the Debye 
layer, the current density, and the thickness of the layer, respectively). It follows from 
here that in this particular case the impedance of the layer in the first approximation 
equals the complex resistance of the circuit, consisting of resistances connected in parallel 
and equal to the differential resistance of the layer R~ and a capacitor with a gap YD be- 
tween the plates. 

We shall present also the asymptotic form of the formulas (3.9) and (3.10) for large 
values of ~I. This form can be obtained from the asymptotic solution of the problem (3.5), 
(3.7), and (3.8) (in the first approximation the function E~ then turns out to be constant, 
equal to -JP/~I) : 

R = - -  (%/s)l/2~D/al, R ~ = R~.  ( 3 . 1 2 )  

The case of perturbations with the characteristic time of the order of the electron 
drift time ~ = O(~I/~% -I) can be studied analogously to the foregoing case. Without indicat- 
ing the detailed results, we note that a formula, identical to (3.12), is obtained for the 
impedance. 

We shall make a remark of a methodical character. In many cases the first terms of the 
adjoining asymptotic expansions of some functions do not join together. It is important, 
however, that each of the indicated first terms, being transformed to the adjoining variable, 
is of an order less than that of the first term of the adjoining expansion. The suggests 
that the first terms of the indicated expansions join with the terms of the adjoining expan- 
sions whose order is higher than that of the first expansion. Based on this proposition it 
may be expected that the given results are adequate for practical applications; in particu- 
lar, the asymptotic representations of the functions in the intermediate regions are found by 
adding the first asymptotic terms of the adjoining expansions. From the methodical stand- 
point, in order to join the expansions and check this proposition, either higher order ap- 
proximations or the intermediate limit must be employed. 

4. Results for the Impedance. The formula (3.10) can be regarded as uniformly applica- 
ble with all indicated values of ~. In [2-6], within the framework of the model taking into 

43 



IRI/~o ~, ohm.cm 2 .ArgR/2 [o ~ I ..... A,:I R IRII , ohm" cm 2 4,0 

40 ~14 

0 2 ,5" IJ%Hz 5jO.~O 7 
Fig. i 

5.~ZHz ~8 

Fig. 2 

account the presence of only ions in the Debye layer, it is concluded that in the range of 
frequencies exceeding significantly the inverse drift time of ions drifting through the Debye 
layer, the impedance of the cathode layer becomes equal to ~. The relations (3.12) show 
that this result remains valid also in the present model, in which the presence of electrons 
in the Debye layer is also significant. 

The impedance calculated based on the formulas (3.9) and (3.10) for the following condi- 
tions [I] is shown by the solid lines in Figs. I and 2: the plasma consists of the combus- 
tion products with a potassium additive and atmospheric pressure; the molar fraction of 
potassium atoms across the Debye layer is constant and equals 1%; the profile shown in Fig. 2 
of [i] is taken for the distribution of the plasma temperature; ~ i%; the calculations were 
performed for ]8o=5.3; 16.6 mA/cm 2 and U' = 311 and 606 V (Figs. I and 2, respectively). 

It is interesting to note that the results of the numerical calculation can be adequate- 
ly approximated by the formulas (3,11) (broken lines). 

It follows from the foregoing that measurement of the impedance at frequencies of the 
order of the inverse drift time of ions through the Debye layer enables determining the 
thickness of the Debye layer corresponding to the given current density. Thus comparison of 
the theory of current flow through the cathodic boundary layer with experiment can be per- 
formed not only based on the usually measured current-voltage characteristic US(f~ but also 
based on the dependence YD (is0), which would undoubtedly be very useful. For example, even in 
the simplest case, when the effect of direct ionization is insignificant, it is often dif- 
ficult to make a direct comparison of the theoretical dependence U~(/~ with experiment owing 
to the uncertainty in the distribution of the rate of stepped ionization in the cathodic 
region. The possibility of comparing at the same time YD (f0) greatly simplifies this situa- 
tion. For example, the distribution of the rate of stepped ionization can be found from an 
analysis of this dependence, determined in the experiment: /i, ~ ~ [e(d#m /~0)]-i; then using 
this dependence the dependence Us(/~ can be compared. 

It is known from experiments with cold cathodes that at some value of the current den- 
sity the diffusion form of the discharge transforms into an arc form; this transition is 
probably the result of the development of some instability. Based on the results of the 
analysis of experimental data, performed in [9], it is natural to examine, as a first step in 
the development of the corresponding theory, the possibility that this instability exists 
within the framework of the present model, i.e., neglecting emission from the surface and the 
effect of Joule heating on the temperature of the plasma. Since the one-dimensional pertur- 
bations do not change the voltage drop in the boundary layer, the characteristic frequencies 
(more precisely, the characteristic decrements) for such perturbations correspond to zeroes 
of the impedance, i.e., they are roots of the equation R(~) = 0. If it is assumed that the 
one-dimensional perturbations are the most dangerous perturbations (they develop with the 
lowest values of the current density), then the appearance of instability corresponds to the 
appearance of a root of this equation in the left half-plane. The calculation of the func- 
tion R(~) for the above-indicated conditions showed, however, that there are no zeros in this 
half-plane, i.e., within the framework of the model studied the instability apparently does 
not occur. 
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